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We shall consider the problem of theoptimization of a succession of reactors. 

Let each reactor be described by the system of equations (see [l] ) 
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Here z = (x1, . . ., q) is the vector variable which characterizes the state of the sys- 

tem in a given section of the reactor (concentration of substances, temperature, pressure 

and so on), y = (yr, . . ., y,,) is the vector variable characterizing the state of the catalyzer, 

1 is the rnnning length of the reactor and t is the astronomic time. 

Let us aasame that the oatput of one of the components, x1 for instance, must be opti- 

mizad over the cycle time T. The controlling variables consist of some of the variables 

y (for instance, xi for i = n,, . . ., n) on theinpnt of each of the reactors. It can be easily 

seen that this problem can be expressed mathematically in the following manner. 

Let as consider in the I, t plane the rectangle 0, Z,, A, T. (We shall call it the region 

D). (Fig. 1.). Let us divide the segment [O, J!,] into r parts defined by the points 1,, . . ., 

Z,._, We shall, respectively, denote by la and 1, the end points of this segment. The points 

Za and I, correspond to the beginnings and the endsof the reactors. Inside each rectangle 

1 
D, (1, < 1 < &, 0 < t < T; a=O, . . ., r - 1) 

4 
A 

kL 

the variables Zi (I, t ) satisfy the system (1). 

I r-1 
On the lines 1 = I,, the variables xi (1, t) (i = 1, . . . . nI - 1) 

D are continuous 

4 

xi (la - 0, q = 9 (la + 0, 1) 

t (a = 1, . . .) r - 1; i = 1 .( . .( nr - 1) (2) 

0 T and the variables 5 (1, t) (i = nI, . . ., n) can have discontinuities. 

The functions xi (1, + 0, t) (a4 . . ., r--l; i=%, . . ., n) have the physical meaning 

of distributed controlling parameters. It is assumed that these functions are piecewise 
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continuous and piecewi,s,s continuously differentiable with reapect to t. For 1 = Za and 

t = r, the following relations hold 

zi (I,, r) = zio @) (i = 1, . . ., n1 - ., (3) 

Yj (IV O) = Yjo (I) 0’ = 1, . . .( p) (4) 

We shall assume that the functions zio (t), Yjo (1) are continuously differentiable. 

From the assumptionsmade, it foil ows that inside each rectangle D, the variables. xi (1, t) 

can have diecontinuities only on the lines t = constant, and that the y . (1, t) are continuous. 
1 

The optimum problem can now be formulated as follows. Find functions xi (1, + 0, r) 

(a = 0, . . ., r - 1; i = n,, . . ., n), such that the integral 

(5) 

takes a maximum value. We note that a number of papers [2 -41 have appeared on the opti- 

mization of systems with distributed parameters. Here, we shall get thenecessary con- 

ditions for having an extremum of the functional (5) and we shall consider one of the 

approximate methods for finding the optimum yalues of the controlling variables. 

In place of the integral (5) let us consider the functional 

I* = \ z1 (I,, r) dt + ‘2 ‘i’r i [i hi (xii - fi (x, y)) + jgPj (%t - qj (z* y))Idz ‘r 

0 a=0 1, 0 i=l 
(6) 

8Xi -- _?!!i 
“il - al 1 Yjt - at 

Here the hi = lii (1, t) are, thus far, completely arbitrary functions and the 

/~j = pj (1, t) are only constrained to be continuous in t. 

If, in each rectangle B, (a = 0, . . ., r - 1) the functions Xi, yj satisfy the system 
(l), theintegral (6) will be equal to the integral (5) for any zi (la + 0, t) (a = 0, . . ., r - 

- 1; i = r&l, . . ., 4. 

Let us assume that for 

ZCi (I, + 0, t) = Zj_* (1, + 0, t) 

the functional I+ takes a maximum value. 

We have 

(a = 0, . . ., r - 1; i = I+, . . ., n) 

Let Us vary xi* (1, + 0, t). 

xi (I, + 0, t, = xi* (la + 0, t) + 6Xi (la + 0, t) (7) 

In order to find the variationof the functional (6) we shall first find the variation of the 

following functional 
1a+~ T 

I,= * 
s s 

F(z,v . . ., z,, zll, . . ., zmt, zlt, . . ., zmt) dl dt (8) 

I.2 ” 

Here (9) 

F= i&(Zit- fi) + iPj (Yjt - Cpj), .Zi = 
Xi, i = 1, . a ep TZ 

i=l j=i 
Yi_** i=n+f,. . ., n+p= It2 



710 lu. M. V&in and G. ht. Ostrovskii 

Let zt (I, t)correspond to the extremum functions 2; (I, + 0, t). 

The variation of the controlling variables (7) will yield a variation of the functions 
Y*(b 0 

G (l, t) = zi* (l, t) + rli (II t) 
(10) 

We shall assume that insiae each rectangle D, the variables qi (I, t) are continuous 

and have continuoas derivatives, whereopon the conditions 

are satisfied. I 71i I < e, I llil I < 89 I rlit I < .!? (11) 

We ahall find the variation of the functional (8) for xi (I, t) = zi* (1, t) 

T la+1 

61, = 
s s 

(F (Zi* + Tli* q[* -P qil7 “it* + rlil7 ‘9 ‘) - 

0 1, 

- F (Zi*r 41*, Zit*, 1, t)) dl dt 

Expanding the first integrand in a Taylor series and leaving only the small terms of 

the first order of magnitude, we get 

Integrating by parts and taking into account the continuity of pj (1, t) = aF / azn+j, t 

with respect to t. we get 

(13) 

(14) 

- s 1 &($&)‘Wdt 
Substituting (13) and (14) into (12) we get 

0 I, i=l 

“, ‘~ ~~’ i;(~-~ (~)-~ (~))7)idldt $- 
0 1, f=l 
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Using (9) this yields 

0 1, s=1 i=l j=i 

p %. ai - 2 $ Pj) 6Yq (I, t)] dl dt + 
j=l 

(16) 

T 

’ aI* z= s 6r, (I,, t) dt + 2 
0 

“ST ‘Y[;: (_!%!_ -g& _ $!Bpj)x 
a=00 1, S=l i=l j=l 

X6Z,(Z,t)+ i; (-$f-~~Ai- ia$pj)X 

q=1 i=l j=l 
T n 

x 6y, (I, t)] dl dt + ‘; 5 2 [hi (Za+l - 0, t) x 

a=00 i=l 

x h (Ior+l - 0, t) - li (1, 6 0, t) 6Zt (I, + 0, t)] dt + 

1 

(17) 

We shall now choose functions A, (s = 1, . . ., n), pq fq = 1, . . ., p) which -tisfy 

the system of equations 

(18) 

We shall, furthermore, assume that on thelines 

I = I, (OL = 1, . . .) r - I), 1, u, - 0, t) = A, (1, 4- 0, :) = 1, (Z,, t) 
(s = 1, . . ., n) (19) 

and that, at the boundary of the region D for Z = I, and t = T, the equationa 

are satisfied. 

A, u,, t) = 1, a, (L 0 = 0 (s = 2, . . ., n), 

PQ (I. T, = o (q = 1, * - -9 PI 
(20) 

For such a choice of h, and the doableintegral in (17) becomes equal to zero. 

Noticing also that on the basisof 
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82i 0, - 0, t) = 8ri (2, + 0, t) (a = 1, . . ., r - 1; i = 1, . . ., n1 - 1) (21) 

8xt (IO, t) = 8f/j (I, 0) = 0 (i = 1, . . ., nl - 1; j = 1, . . .9 P) (22) 

we get the following expression for the variationsof the functional I 
= n 

81 = 81* = - r; \ 2 (8~ (1, f 0, t) - 8xi (I, - 0, t)) hi (Z,, t) dt - 
a=1 0 i=n, 

= II 

0 

(23) 
- 8x1 (lo, t) hi (lo, t) dt 

0 i=n, 

It can be easily shown [S], that 6I = 0 on the extremes of the functional I. Whereupon, 

by virtue of theindependence of the variations Sq (1, + 0, t) (U = 0, . . ., r - 1; i = 

= nl,...,~) wehave 

1Li U,, t) = 0 (a = 0, . . ., r - 1; i = nI, . . ., n) (24) 

Thns, the problem is reduced to the simultaneous solution of the system of differential 

equations in the partial derivatives (1) and (18) with the boundary conditions (2) - (4), (19), 

(20), (24). The boundary conditions are given on the boundary of the region D as well as 

inside it. 

The conditions obtained are necessary. The question of knowing whether they are also 

sufficient mast be resolved in each concrete case from the physical meaning of the problem. 

In order to avoid solving a rather difficult boundary value problem for systems of par 

dsl differential equationa, we shall proceedaa follows. 

We shall vary only one of the functions zt (1, + 0, t), for instance xk (Z,, t) = zkY (t), 

in its varfable 82, ( ) t . We define the problem of finding an expression yielding an easy 

computation of the variations of the functional (5). 

She, only zky (t), varies 

8zi (I, _jz 0, t) = 
8~ (lv f 0, t), i = k, a = y 

0, i#k or a#;y 
(25) 

must bs intrsdacsd into expression (23). 

The variation has an effect on the aubsequmt state only, but not on the preceding; 

therefore 82, (2, - 0, t) = 0 for a Q y. 

Whereapon formula (23) becomes 

T (26) 

8zt (1, - 0, t) At (1,. t) df - 
s 

8~k (I,, + 0, t) A, (I,, t) dt 

0 

Similarly, it is not practical to use formula (26) to calculate the variation: In that case 

it woald be necessary to find the variations 8~ (Z= - 0, t) (a = r + 1, . . ., r - l).Thus, 

we shall use a slightly different method. We shall introduce the new variables vi ,(t ) in the 

following manner : 
vi0 (:I = q (I, f 0, t) - q (la - 0, 9, vi0 (t) = Zf (I,, t) (27) 

(u = 1, . . ., r - 1; i = nl, . . ., n) 
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and we shall aeuch not for the q (1= -I- 0, t), but for the variablea utcr (t). It can be 

eady aeon that if the via (t), are known, then the qoantftiee it (I, + 0, *),cmbe deter- 
mined with the help of (27), and vice versa (the system (1) must be solved once in that 

case). 

From (27) we get 

6xt (I, + 0, t) - 6zt (I, - 0, t) = 6v, 0) 

Substituting (28) into (23) 
n fr-1 

(28) 

cm 

The variables viol (t) are independent, therefore, if only the variable u&v (C) is varied 

then 6v,, = 0 (i # k or u f y). This yields 
,C 

(30) 61 = - s ik (ly, t) 6vk,dt 

0 

We shall now consider the optimum problem having a finite number of variables. For 

this purpose, we shall divide the interval [O, T] into s parts with the numbers tI, ’ ’ ‘* t *I. 

We shall assume that M is chosen sufficiently large and that all functions yar (t) are 

approximated by piecewise constant functions which are equal to V& inside the intervals 

[tpt t,,,]. The quantity I is now a function of the finite number ((n - n, + i) rs) of the 

variables viz (a = 0, . . ., r - 1; i = nl, . . ., n; q = 0, . . ., I - 1) 

I, = Il(U{$ (31) 

and it can be maximized by the methodsof nonlinear programming. If, for instance, the 

gradient method is used, the successive approximations of the required quantities viz are 

calculated according to the formula [6] 

where j is the number of the iteration. 

This requires the calculation of all derivatives 

ar, 

al?,: 
(a = 0, . . ., r - 1; i = n,, . . ., n; q = 0, . . .) s - i) 

at each iteration. Using (30), we shall find a convenient formula for the calculation of 

these derivatives. For thispurpose, we shall vary the ordinates vkt by 60~:. From formula 

(30) we get 
cl+1 

ij[=- * 
s 

hk Uy, 4 $&it (33) 

f9 

whereupon, since 6vk., q = constant fcr tq < t < tg+l, we can easily obtain the following ex- 

pression for the derivative 

%+I 
ar 61 

. 
-Ei-s- 
%c: hc: I 

A, u,, t) dt (34) 

t P 
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Thus, in order to obtain all the derivatives for the iteration, it in necessary to proceed 

as follows : 

1. Solve the system (1) in the region D with the boundary conditions (2) - (4) and 

zi (‘a + 0, t) = rz* (1, + 0, t)]j (a = 1, . . .) r - 1; i = n1, . . .) n) 

where the index j is the number of the iteration, and thelxi (1, + 0, t)]jare the values of 

the controlling functions obtained for the previous iteration. 

2. Store the values found for x, (I, t), yf (1, t) for a sufficiently large number of points 

of the region D. 

3. Solve the system (18) with the boundary conditions (19) and (20), by using the stored 

valnes Of Zi’ (1, t)t Yj (4 t)- 

4. Calculate at the same time as the solution of the system (18) the values of the deri- 

vatives aI / auk: by using formula (34). 

Thus, in order to makeone iteration, it isneceasary to solve system (1) once and sya- 

tern (18) once. 

We note that for the system (1) the boundary conditions are given only on the segments 

1 = const and I = const. Thus, its solution will not present any important difficulties, for 

instance by usfag the straight linesmethod. 

The same appl!es also to the system (19); however, forits solution we shall move 

‘backwards’ on both coordinates, from 1 = 1, to 1 = lo and from t = T to L = 0. 

The realizatibn of the iteration by formulas (32) guarantees the convergence of the 

sequence of approximations, at least to a local maximum. 

In the case in which the presenceof a few local maxima is assumed, the global maximum 

can be sought with effectiveness by using oneof the global methodsof search [7],, since the 

most difficult part of these methods consists in the computation of the components of the 

optimized functions gradient. 
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