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We shall consider the problem of the optimization of a succession of reactors.

Let each reactor be described by the system of equations (see [1])

dz; . dy; .
71“:,{(“:1![) (L:17 sty ﬂ), T;:‘P] (1‘, y) (l = 17' .« ey P) (1)
Here x = (zy, . . ., ) is the vector variable which characterizes the state of the sys-

tem in a given section of the reactor (concentration of substances, temperature, pressure
and so on), y = (v, - . ., yp) is the vector variable characterizing the state of the catalyzer,
! is the running length of the reactor and ¢ is the astronomic time.

Let us assume that the output of one of the components, x, for instance, must be opti-
mized over the cycle time 7. The controlling variables consist of some of the variables
x; (for instance, x; for i = n,, . . ., n) on theinput of each of the reactors. It can be easily
seen that this problem can be expressed mathematically in the following manner.

Let us consider in the /, ¢ plane the rectangle O, L, 4, T. (We shall call it the region
D). (Fig. 1.). Let us divide the segment [0, L] into r parts defined by the points Uy -« o
l,_, We shall, respectively, denote by [, and I, the end points of this segment. The points
lq and I, correspond to the beginnings and the ends of the reactors. Inside each rectangle

il D, (I, <I< 1y 0T 0=0,...,7r—1)

; A the variables x; (I, ¢) satisfy the system (1).

A
L, On the lines [ = l,, the variables z; ({, ) (i =1, ..., n, — 1)

D are continuous

; i (ly —0,8) = 2 ([, +0,1)

1 " @=1,..,r—Li=1.,..,n~1) (2

0 T " and the variables x; (, ¢) (i = n,, . . ., n) can have discontinuities.

The functions x; (!; +0, t) (@=0, . . ., r—1; i=n,, . . ., n) have the physical meaning
of distributed controlling parameters. It is assumed that these functions are piecewise
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continuous and piecewise continuously differentiable with respect to ¢t. For ! = Iy and
t =ty the following relations hold

zi (lgy 1) = 25 () (i=1,...,n—4 (3)
y; (1 0) = yj0 () G=1...p @
We shall assume that the functions z;; (2), Yio (l) are continuously differentiable.

From the assumptions made, it follows that inside each rectangle D, the variables x; (I, ¢)
can have discontinuities only on the lines ¢ = constant, and that the Y (1, t) are continuous.

The optimum problem can now be formulated as follows. Find functions z; (I, + 0 %)
(@=0,...,r—1; i=ny,...,n),such that the integral
T

I= S zy Uy, 8) dt
0

(5)

takes a maximum value. We note that a number of papers [2 — 4] have appeared on the opti-
mization of systems with distributed parameters. Here, we shall get thenecessary con-
ditions for having an extremum of the functional (5) and we shall consider one of the
approximate methods for finding the optimum values of the controlling variables.

In place of the integral (5) let us consider the functional
r—1 a1t T =

T Y4
= S 2 (b 1) de 4 D) S S [2 A (@ — fi (= 9)) + jéﬂj Wit — 9; (=, y))]dldt
i=1 =

0 a=0 ly ©

(6)
dz; B %
== 1 Vit =
Here the A; = A; (I, t) are, thus far, completely arbitrary functions and the
B; = p;j (1, t) are only constrained to be continuous in ¢.
If, in each rectangle D, (@ = 0, ..., r — 1) the functions x;, Yj satisfy the system

(1), the integral (6) will be equal to the integral (5) for any x; (!, + 0, ) (@ = 0, . . ., r —
—-1;i=n4 ..., n).

Let us assume that for
(g +0,t)=a*(, +0,8) (@=0,..., r—1; i=mun,...,n

the functional [* takes a maximum value. Let us vary z;* ({, + 0, 1).

We have
X, (g +0,0)=a* (1, +0,8) + 8z, (1, + 0, 9) (7

In order to find the variation of the functional (6) we shall first find the variation of the

following functional

laypi T

Fz1, o« o3 Zms 2155« « o1 Sy Zyps oo oy Zy) dldt @)
0

o R

I,=

-
R

Here ©
n P o
F:ZM(xu—h)-i- Zﬂi(yjt-*fpj), zi:{xi,t—i,...,n

i=1 i=1 Yiene t=n-1,..., n4+-p=m
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Let z} (I, {)correspond to the extremam functions z? (Ip +0,0).

‘(lTh)e variation of the controlling variables (7) will yield a variation of the functions
z; ¢
. = g% :
Zi (1) z* (L) +m; () (10)

We shall assume that insice each rectengle D, the variables 1); (I, t) are continuous
and have continnous derivatives, whereupon the conditions

are satisfied. m<e Ingi<e |n<e (11)
We shall find the variation of the functional (8) for z; (I, t) = z* (1, t)
T da+1
81, = S S (F (z* + gy z0* 4+ My w5+ Mip L8 —
0 i

— F (z*, zp*, 2%, 1, 1)) dldt
Expanding the first integrand in a Taylor series and leaving only the small terms of
the first order of magnitude, we get

T
81, = 8I' < 81" =0 ZE
a <+ + &1, 81 3 2 3z M;dlde

o Iy = (12)

T la+1 m oF T Im+1 m

81" =S S \ OF v
. N dl dt, 01 = Z n” didt
0 iy i=1 o Iy 1_1

Integrating by parts and taking into account the continuity of u; (I, t) = 0F / 0z;5, 4
with respect to ¢, we get

T m

oF
81" = S E ( 9z;
o =1

(13)

l=ly 41—0 Mi (la+1 -0, —

T la+1

oF ‘ 8 { dF
~ Bz ’t:1a+o‘ m; (I + 0, ) dt —S \ Z ar (m)nidldt

0 Iy i=1

lavy
I\ 2y =T 9z Jt=0
lq i=1
T la+1 m
* 7] oF
—S Eﬁ(az“%‘”‘”
0 Iy i=1

Substitating (13) and (14) into (12) we get
T la+1 m

x ] L B 8 ) (2

l =
T m
oF
+§ D ot o W e =00 = 2|y o G+ 0, na
0

i=1 * (15)

Ia+1 m

ar | oF
oF | (1, T) — 9F 1, 0)) dt
+ S 2 ( 9z; 1=T M (LT dzy, t=oni ¢ )>

Uy i=1
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Using (9) this yields

T la'+l a n of o
o, =\ \ [ (=5 — Do n— D3 w)ba,t, 0 +
0 lg s=1 i=1 j=1 (16)
< g 9/ < 99;
25 (A S 5o+
g=1 i=1 i=1
T n
"IL g E {}"1 (Za—f—l - O, t) 5731‘ ("a+1 - 07 f) - }"1 (la ’1"‘ 01 t) 5”1 (la -4 01 t)} dt ‘l|"
§ i=o
la.+1 P
St 85 01—y 0, 0) 8350, 001
la j=1
It follows that
T r— 1 T la_+1 n of; P
* _ 1 i 6&
(SI & 611 (lr, t) dt + S S [Z ( Zax. 2 az. ”]) X
0 a-—n 0 Iy s=1 =1
& ofi acp
Xﬁxs(l,t)+2( Z'A—E 2%; )
g=1 i=1
T n a7
X Syg (L, )] dldt + D) & DAi Iy — 0, 8) X
a=00 §=1
X 82y (lyyy — 0,8) — A (1, + 0, #) 8z (I, + 0, 1)) dt +
Lop
+S Vs (1, T) 8y; ¢, T) — p; (1, 0) by; (3, 0)] d
I, i=1

We shall now choose functions A, (s =1, ..., n), ug (g = 1, .. ., p) which satisfy
the system of equations

fi
2 6.{1:, Zaz'l‘«] (s=1,...,n)

2 Par (18)
»
aP‘q— Eaft A — Eéﬂpj (¢g=1,...,p
t—-l j=1 ayq

We shall, furthermore, assume that on the lines

I=1, @=1..,r—1), A(lyg—0,8 =2+ 0,8 =2, (1

(s=1,...,n (19)
and that, at the boundary of the region D forl =1, and ¢t = T, the equations
A, 1) =1, Ay () =0 (s=2,...,1), (20)

B, H=0 (g=14,...,p
are satisfied.

For such a choice of A, and y, the doubleintegral in (17) becomes equal to zero.
Noticing also that onthe basis of l(‘;1) —(4)
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By (I, — 0, t) = 8z; (I, + 0, ) @=1,..0r—1;i=1,...n—1 (21
Sx; (bo, t) = 6y; (1, 0) =0 Gi=1...m—147i=141...,p) (22)
we get the following expression for the variationsof the functional /
r—1T n
81 =61* = — Y, S SV B (1, + 0, ) — Bz (1, — 0, ) Ai (U, 1) dt —
a=10 i=n,
T n (23)
St onuna
0 i=n,

It can be easily shown [5], that 85 = 0 on the extremes of the functional /. Whereupon,
by wvirtue of theindependence of the variations 8z; ({, + 0,t) (@ =0,...,r—1;i=
= ny, ..., n) wehave
Mgt =0 @=0,....,r—1;i=n4,...,n (24)

Thus, the problem is reduced to the simultaneous solution of the system of differential
equations in the partial derivatives (1) and (18) with the boundary conditions (2) — (4), (19),
(20), (24). The boundary conditions are given on the boundary of the region D as well as
inside it.

The conditions obtained are necessary. The question of knowing whether they are also
sufficient must be resolved in each concrete case from the physical meaning of the problem.

In order to avoid solving a rather difficult boundary value problem for systems of par-
tial differential equations, we shall proceed as follows.

We shall vary only one of the functions z; (!, - 0, t), for instance xz; (I, t) = =z, (t),
in its variable Gzh (t). We define the problem of finding an expression yielding an easy
computation of the variations of the functional (5).

Since, only z,. (¢), varies

6 l \Oa y L=k, =
O B

0, is=k or asxy

(25)

must be introduced into expression (23).

The variation has an effect on the subsequent state only, but not on the preceding;
therefore 8z (I, — 0, ¢) = 0 for a < ¥.

Whereupon formula (23) becomes

n T 4 T (26)
81 = E S E dz; (I, — 0, ) A4 (I, 1) di _S G:vk (lY + 0,1 7‘1: (,lY, t) di
=m0 a=v+1 0

Similarly, it is not practical to use formula (26) to calculate the variation: In that case
it would be necessary to find the variations 8x; (I, —0,¢) (o =T+ 1, ..., r — 1).Thus,
we shall use a slightly different method. We shall introduce the new variables v; , (¢) in the
following manner :

Ve ) = 2, (g + 0, ) — 2, (Ip — 0,8), vy (1) = z; (L, 1) (27

@=1,..,r—1;i=n,..., n
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and we shall search not for the z; (I, + 0, #), but for the variables v;, {t). It can be
easily seen that if the v;, (¢), are known, then the quantities z; (I, + 0, t),canbe deter-
mined with the help of (27), and vice versa (the system (1) must be solved once in that

case).

From (27) we get

8z (I, +0,8) — 8z (I, — 0, ) = Sy, @) (28)
Substituting (28) into (23) r
n r—1
81 = — Z S E Mi (g, 1) Bugat (29)
i=n 0 &=0

The variables v;, (t) are independent, therefore, if only the variable ¥, {¢} is varied
then 8v;,, = 0 (i 5= k or & # y). This yields
T
(30
81 = — (&, ) Suy )
0
We shall now consider the optimum problem having a finite number of variables. For
this purpose, we shall divide the interval [0, T] into s parts with the numbers t;, . . ., t 1.
We shall assume that M is chosen sufficiently large and that all functions vy, (f) are
approximated by piecewise constant functions which are equal to ;] inside the intervals
[tq, ty+1). The quantity [ is now a function of the finite number ((n — n, + 1) rs) of the
variables "’ig @=0,..,r—1i=ny..04¢=0...,8—1)
11 = Il(vig) (31)
and it can be maximized by the methods of nonlinear programming. If, for instance, the
gradient method is used, the successive approximations of the required quantities %l are
calculated according to the formula {6]

@0 = (0,9 4 h—oTL (32)
ov;l
where j is the number of the iteration.
This requires the calculation of all derivatives
al, ]
P (a=0,...,r-1;z:nl,...,n;qzo,...,s—i)

at each iteration. Using (30), we shall find a convenient formula for the calculation of
these derivatives. For this purpose, we shall vary the ordinates vkg by 8u, 3. From formula

(30) we get :
q'*'l

tq
whereupon, since ﬁvkg = constant for t <t < £, 1+ We can easily obtain the following ex-
pression for the derivative

to+1 1=0,...,r—1
ol 81 ’
T e T T ka(lY,t)dt k=rtye.on (34)
ky kY i g=0,...,s—1
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Thus, in order to obtain all the derivatives for the iteration, it is necessary to proceed

as follows:
1. Solve the system (1) in the region D with the boundary conditions (2) — (4) and
2l #0,8)=[z,(,+0,0F (@=1,...,r—1;i=ny..., n

where the index j is the number of the iteration, and the [xi (l, + 0, t)]f are the values of
the controlling functions obtained for the previous iteration.

2. Storethe values found for 2, (}, 9), y; (I, t) for a sufficiently large number of points
of the region D.

3. Solve the system (18) with the boundary conditions (19) and (20), by using the stored
values of z; (¢, t), ¥; (1, ).

4. Calculate at the same time as the solution of the system (18) the values of the deri-
vatives 81 / dv,1 by using formula (34).

Thus, in order to make one iteration, it isnecessary to solve system (1) once and sys-
tem (18) once.

We note that for the system (1) the boundary conditions are given only on the segments
{ = const and t = const. Thus, its solution will not present any important difficulties, for
instance by using the straight lines method.

The same applies also to the system (19); however, forits solution we shall move
‘backwards’ on both coordinates, from [ =1/, to l =/, and from¢t=T to t= 0.

The realization of the iteration by formulas (32) guarantees the convergence of the
sequence of approximations, at least to a local maximam.

In the case in which the presenceof a few local maxima is assumed, the global maximum
can be sought with effectiveness by using oneof the global methods of search [7], since the
most difficult part of these methods consists in the computation of the components of the
optimized functions gradient.
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